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1  Introduction 
It is well known (Ansley and Newbold 1980; Hillmer and Tiao 1979) that exact 
maximum likelihood estimation (EMLE) of time series models is usually 
preferable to other approximate estimation criteria. This is especially true in the 
case of small- to moderate-sized samples and/or parameters close to the  
boundaries of the admissible regions. Instead of pursuing this issue further, this 
paper focuses on some relevant computational aspects concerning the numerical 
maximization of the exact likelihood function of several time series models. The 
range of models considered here covers, among other more usual specifications, a 
new kind of seasonal univariate autoregressive-moving average (ARMA) models, 
single- and multiple-output transfer-function-noise models, vector ARMA models 
and, in general, time series models with parameters subject to certain constraints. 
 A unified framework for EMLE of these models is presented throughout the 
next sections. The basic idea is that of casting the model to be estimated into a 
standard vector ARMA(�p,�q�) specification, (i) whose parameters are linear or 
nonlinear functions of the parameters appearing in the model to be estimated, and 
(ii) to which the most recent and efficient estimation methods (Shea 1984, 1989; 
Mauricio 1995, 1997) can be applied. The main advantage of working within the 
vector ARMA framework lies in the fact that a single algorithm can be used to 
estimate many apparently different models. Thus, the development of some 
guidelines on casting time series models into a standard vector ARMA(�p,�q�) 
specification, in conjunction with an operational design of EMLE algorithms for 
vector ARMA models, are key steps in writing new time series analysis software 
that allows for working in practice with more than a few traditional models. 
 In order to clarify and give these ideas a practical sense, a few suggestions are 
provided in Section 2 on how to write non-standard time series models as standard 
vector ARMA(�p,�q�) models. Then, in Section 3 some guidelines are given on 
writing computer programs that use efficiently the ideas mentioned above; in 
particular, it is shown that a straightforward modular design can be implemented 
in order to write expandable and easy-to-use code for estimating an almost 
unlimited range of time series models. In Section 4 some computationally relevant 
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problems that arise during EMLE of vector ARMA models are considered in  
brief, including the most appropriate methods for detecting and dealing with 
situations of non-stationarity and/or non-invertibility. Recent applications of these 
ideas and some guidelines for future research are summarized in Section 5. 
 
2  The Multivariate ARMA Framework 
Consider a sample of size N on an M-dimensional time series zt (t = 1, …, N�). 
Almost every linear statistical model for zt can be expressed as a standard vector 
ARMA(�p,�q�) model 

 ( ) ( )t tB Bw a  , (2.1) 

where t t w w   (t = 1, …, n) and wt is an m×1 vector; Φ(B�) = I − Φ1B    
− ··· − Φp�B�p; Θ(B�) = I − Θ1B − ··· − Θq�B�q; B is the back-shift operator; Φi� 
(i = 1, …, p), Θi (i = 1, …, q) and � are m×m, m×m and m×1 parameter 
matrices, respectively; the at's are m×1 random vectors identically and 
independently distributed as N(�0,�σ2Q�), with σ2�>�0 and Q (m×m) symmetric and 
positive definite; and, finally, n and m are related to N and M in a known way. 
 One may think of every component of wt (t = 1, …, n), Φi� (i = 1, …, p), Θi   
(i = 1, …, q), � and Q as being an explicit function of a k×1 vector x, whose 
elements either are the parameters of the time series model considered, or are 
related to them in a known way; in the case of wt, it can also be thought of as 
depending (primarily) on the data zt. 
 To illustrate, consider a sample of 100 observations on zt = [zt1, zt�2]

T, so that 
N = 100, M = 2, and suppose that an analyst specifies the following transfer-
function-noise model for zt: 
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where ξt1 is a deterministic variable, ��=�1−�B, and ut1 and ut�2 are independent 
white noise disturbances with variances 2

1  and 2
2 , respectively. After some 

algebraic manipulation, (2.2) can be written as follows: 
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 (2.3) 

Thus, taking n = N − 1 = 99, m = M = 2, and letting Φ(B�), Θ(B�), wt and at 
represent, respectively, the two 2×2 polynomial matrices and the two 2×1  
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vectors appearing in (2.3), it turns out that (2.3) has the same form as (2.1), with 
� = 0 and 
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 Hence, EMLE of β1, ω0, δ1, φ1, θ2, 
2
1  and 2

2 , the parameters of the original 
specification (2.2), can be performed by maximizing a concentrated log likelihood 
for (2.1) (Shea 1984; Mauricio 1995) as a function of x = [β1, ω0, δ1, φ1, θ2, η]T 
only. (Note that 2 2

1 2/    and, therefore, k = 6.) 
 Although the algebra leading from (2.2) to (2.3)-(2.4) becomes more involved 
when considering more complex models, the basic idea of casting the specified 
model into a standard vector ARMA(�p,�q�) model remains unchanged. Clearly, the 
casting algebra will vary from model to model, so that user involvement at this 
stage is unavoidable. However, it is also true that the casting process can be 
automated in some instances for production purposes; this is possible, for   
example, in the case of scalar and vector ARMA models, including both 
multiplicative Box-Jenkins and generalized seasonal models with frequency 
restrictions (Gallego 1995). Thus, computer programs allowing for high 
productivity when dealing with usual models, as well as providing enough 
flexibility for dealing with non-usual and/or complex models, are very valuable 
tools for EMLE of many time series models. These dual-purpose programs can   
be coded through a modular design of the kind described in the next section. 
 
3  A Modular System of Estimation Algorithms 
In order to perform EMLE of the parameter vector x that makes up the standard 
vector ARMA(�p,�q�) model (2.1), one may minimize numerically, starting from an 
admissible initial guess x0, the following scaled objective function: 

 1 2
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where 

 
1

T 1
1 2( ) ( ) , ( )=| |nm  x w w x   , (3.2) 

Π10 = Π1(x0), Π20 = Π2(x0), 
T T T
1[ ,..., ]nw w w   , and 2 TE[ ] ww   . (Note 

that both w  and, mainly, Σ depend on the parameter vector x.) On convergence, a 
sample estimate of the covariance matrix of the exact maximum likelihood 
estimator is given by 2 1ˆ ˆ2 ( )[ ( )]F n F x x , where 2 ˆ( )F x  represents the hessian 
matrix of (3.1) evaluated at the final estimate x̂  (Mauricio 1995). 
 The computation of (3.2) at every iteration of the minimization algorithm, can 
be carried out through any of the currently available methods for evaluating the 
exact likelihood function of vector ARMA models; Shea (1989) and Mauricio 
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(1997) are reasonably good choices here. The numerical minimization procedure 
can be any of the many currently available methods, although a quasi-Newton 
method based on the factorized version of the BFGS formula is most advisable. 
 With these ideas in mind, the design of EMLE programs for time series models 
can be made up of five modules: (1) a user module (USER), (2) a driver module 
(DRIVER), (3) a module for the computation of the exact log-likelihood of vector 
ARMA models (ELFVARMA), (4) a numerical optimization module (OPT), and 
(5) a numerical linear algebra module (LALG). The following operations should 
be performed within each of them: 

1 Module USER: 
 1.1 Set k (scalar: number of parameters) and x0 (k×1 vector: initial guess). 
 1.2 Implement routine CAST [cast time series model into model (2.1)]. 
 1.3 Call module DRIVER and process output on return. 
2 Module DRIVER: 
 2.1 Implement routine OBJFUNC [set scaled objective function (3.1)]. 
 2.2 Put x0 into standard vector ARMA structure (CAST). 
 2.3 Compute (3.2) at x0 (ELFVARMA): initialize Π10 and Π20. 
 2.4 Minimize (3.1) starting from x0 (OPT): obtain final estimate x̂ . 
 2.5 Compute estimated covariance matrix at x̂ . 
 2.6 Put x̂  into standard vector ARMA structure (CAST). 
 2.7 Compute (3.2) and residuals at x̂  (ELFVARMA), and return. 
3 Module ELFVARMA: Check for appropriateness of parameter values and 

compute (3.2). 
4 Module OPT: Minimize numerically a k-variable real function. 
5 Module LALG: Perform some linear algebra computations for modules 

ELFVARMA and OPT. 

 The whole EMLE process is driven by module DRIVER. Implementation of 
routine OBJFUNC for computing (3.1) at every value of x is accomplished in two 
steps: (i) put x into standard vector ARMA structure (CAST) and (ii) compute 
(3.2) at x (ELFVARMA) and obtain (3.1). (Note that OBJFUNC contains the k-
variable real function to be minimized through module OPT.) The flow of module 
DRIVER is otherwise quite simple. With regard to module ELFVARMA, this is 
an essential one in that not only must it perform an efficient and accurate 
computation of (3.2), but also has to check for stationarity and invertibility of the 
resulting standard model (2.1) (see Section 4 for details). Matrix operations  
needed by modules ELFVARMA and OPT (Cholesky factorization, forward and 
backward substitution, solution of general linear equation systems and computation 
of eigenvalues) are performed within module LALG. At this point, it is interesting 
to note that once modules DRIVER, ELFVARMA, OPT and LALG have been 
coded, the user has to worry about nothing but module USER; note also that 
modules ELFVARMA and OPT may be implemented in different versions, all of 
which should be open to the analyst from module USER. 
 What makes the above design really modular and useful is the fact that the user 
may specify as many CAST routines as needed. To illustrate, consider the  
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example in Section 2; EMLE of model (2.2) requires setting k = 6, x0 (an initial 
guess for x = [x1, x2, x3, x4, x5, x6]

T = [β1, ω0, δ1, φ1, θ2, η]T) and, from (2.3)-
(2.4), specifying a CAST routine implementing the following assignments: 
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On return from module DRIVER, exact maximum likelihood estimates for β1, ω0, 
δ1, φ1, θ2, and η��(= 2

1 / 2
2 ), along with their variances and covariances, are 

readily available; in addition to this, the user can compute (i) an estimate for 2
2  

as 1
1 ˆ( ) ( )nm   x , (ii) the exact log-likelihood at x̂  from 1 ˆ( ) x  and 2 ˆ( ) x , and 

(iii) the residuals for the original model (2.2) as 1 1 0 2ˆt t tû â û  , 2 2t tû â  [see 
(2.3)], where ât1 and ât�2 are the residuals for the standard model computed at x̂ , 
and 0̂  is the estimate obtained for ω0. 
 Currently, this modular design has been implemented by the author using the   
C programming language, which allows for, among other things, passing any 
previously coded CAST routine as a formal parameter to module DRIVER. This 
means that for production purposes, user involvement is reduced to the strict 
minimum of specifying a standard model and the data in an input file, whereas the 
possibility of coding more complex and specific CAST routines for EMLE of non-
standard models remains open to the user. 
 
4  Checking for Stationarity and Invertibility 
Numerical checks for invertibility and stationarity of the resulting standard model 
(2.1), are needed if one wishes to take advantage of the constraining possibilities 
offered by the objective function (3.1) (Shea 1984; Mauricio 1995). Adequate 
numerical checks for stationarity can be found in Shea (1989) and Mauricio (1995, 
1997) as by-products of the computations required for evaluating (3.2); although 
these checks are necessary but not sufficient in the case of mixed (i.e. ARMA) 
models, it has never happened in practice that a model satisfying them has turned 
out to be non-stationary. A numerical check for invertibility can be found in 
Mauricio (1995, 1997) as a by-product too; a more conclusive check can be found 
in Shea (1989), although it requires computing the eigenvalues of a non-symmetric 
mq×mq matrix. Numerical checks for stationarity and invertibility can also be 
found in Luceño (1994); however, they require solving two linear systems of 
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m(m+1)�/�2 + m2(�p−1) and m(m+1)�/�2 + m2(q−1) equations and computing the 
Cholesky factorizations of two mp×mp and mq×mq symmetric matrices, which 
adds significantly to the overall computational burden of the EMLE process. 
 
5  Concluding Remarks 
The techniques outlined in this paper have recently been applied in the 
development of a new methodology for dealing with seasonal time series (Gallego 
1995) as well as in an econometric project on the money supply in Spain (Gonzalo 
1995). In addition to that, they are currently being used in both theoretical and 
applied studies that require efficient and reliable methods for estimating time series 
models. These studies include econometric projects on the Spanish labour markets 
and on the Spanish foreign and public sectors as well as methodological projects   
in the following areas: (i) detection and treatment of influential data, (ii) tests of 
structural breaks in time series models, and (iii) EMLE of multivariate systems 
with cointegrated variables. 
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